翻訳と辞書
Words near each other
・ Brandt 60 mm LR Gun-mortar
・ Brandt Andersen
・ Brandt C. Louie
・ Brandt Centre
・ Brandt Cove
・ Brandt Hall
・ Brandt Hershman
・ Brandt House
・ Brandt House (Lafayette, Louisiana)
・ Brandt Jobe
・ Brandt matrix
・ Brandt Mle 1935
・ Brandt Mle 27/31
・ Brandt Peterson
・ Brandt Report
Brandt semigroup
・ Brandt Smith
・ Brandt Snedeker
・ Brandt Township, Polk County, Minnesota
・ Brandt's bat
・ Brandt's cormorant
・ Brandt's guiara
・ Brandt's hedgehog
・ Brandt's mountain finch
・ Brandt's vole
・ Brandt, Ohio
・ Brandt, South Dakota
・ Brandtaucher
・ Brandtaxia
・ Brandtia


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Brandt semigroup : ウィキペディア英語版
Brandt semigroup
In mathematics, Brandt semigroups are completely 0-simple inverse semigroups. In other words, they are semigroups without proper ideals and which are also inverse semigroups. They are built in the same way as completely 0-simple semigroups:
Let ''G'' be a group and I, J be non-empty sets. Define a matrix P of dimension |I|\times |J| with entries in G^0=G \cup \.
Then, it can be shown that every 0-simple semigroup is of the form S=(I\times G^0\times J) with the operation (i,a,j)
*(k,b,n)=(i,a p_ b,n).
As Brandt semigroups are also inverse semigroups, the construction is more specialized and in fact, I = J (Howie 1995).
Thus, a Brandt semigroup has the form S=(I\times G^0\times I) with the operation (i,a,j)
*(k,b,n)=(i,a p_ b,n).
Moreover, the matrix P is diagonal with only the identity element e of the group G in its diagonal.
==Remarks==
1) The idempotents have the form (i,e,i) where e is the identity of G
2) There are equivalent way to define the Brandt semigroup. Here is another one:
ac=bc≠0 or ca=cb≠0 ⇒ a=b
ab≠0 and bc≠0 ⇒ abc≠0
If ''a'' ≠ 0 then there is unique ''x'',''y'',''z'' for which ''xa'' = ''a'', ''ay'' = ''a'', ''za'' = ''y''.
For all idempotents ''e'' and ''f'' nonzero, ''eSf'' ≠ 0

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Brandt semigroup」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.